



# Next-Gen PV: TOPCon Ultra and Perovskite/Silicon Tandem Technology

# **Ethan Ely**

Product Manager Trinasolar U.S.

#### **Outline**



- > Trina R&D Background
- > TOPCon Ultra Technology
- > Tandem Technology Introduction
- Perovskite + Silicon Advantage
- > Tandem Development Progress
- > Key Challenges of Perovskite / Silicon Tandem Cells
- ➤ Intellectual Property of Perovskite Solar Cells
- Summary

#### **Trinasolar: R&D Leadership**





Founded in 1997, serving 180 countries with 25+ years of technology leadership





As of June 2025



#1 globally with 200GW+ of 210mm module shipments

As of June 2025



PVEL Top Performer for 11

consecutive years and RETC

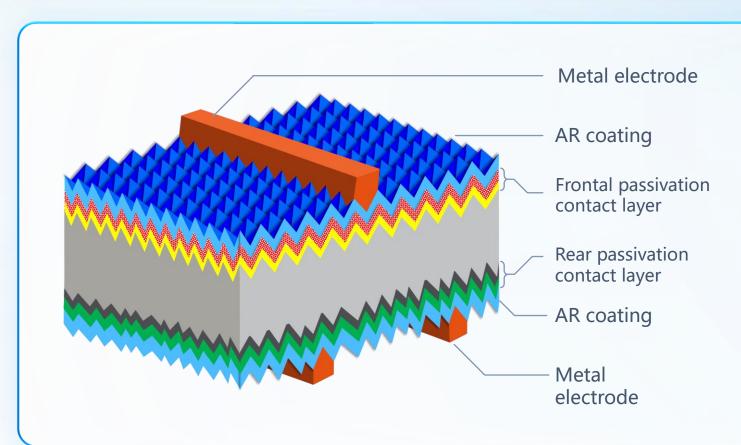
Overall Highest Achiever 5 times



Granted 3400+ patents including 500+ TOPCon patents






World's first TÜV Rheinland IEC certified witness test laboratory and CNAS Accredited test laboratory

Participated in formulation of 230 industry standards and received certification 170 standards



#### **Next-Generation Cell Tech: TOPCon Ultra**



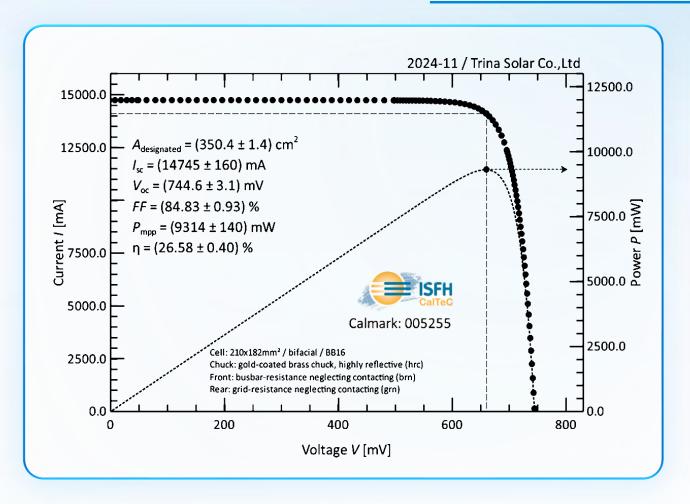


#### **Double-Side Full Passivation**

Both front and rear metal contact areas use passivated contact technology

#### **Optical Parasitic Absorption Suppression**

Using specialized structures and processes to reduce parasitic absorption in the passivated contact layer


#### **Ultra-Thin Busbar Technology**

Narrowing busbar thickness to <15 μm

Cell efficiency increases of over 1.0%, module power increases of 30W+

#### **Trina**solar

# **New TOPCon Record: 26.58% Cell Efficiency**



|       | V₀c [mV] | $J_{\rm sc}$ [mA/cm <sup>2</sup> ] | <i>FF</i> [%] | η [%] |
|-------|----------|------------------------------------|---------------|-------|
| Front | 744.6    | 42.1                               | 84.83         | 26.58 |

TOPCon Ultra Cell Efficiency of 26.58% certified by Solar Energy Research in Hamelin (ISFH) in Nov. 2024

The 28<sup>th</sup> time Trina Solar has broken the cell efficiency world record

The first time that N TOPCon cell efficiency surpasses 26%

Achieved on flagship 210R wafer

#### **Next-Generation TOPCon Ultra Module Portfolio**









**V**ertex N TOPCon Ultra 23.8% Efficiency G12

Up to **470W** 

Small format module

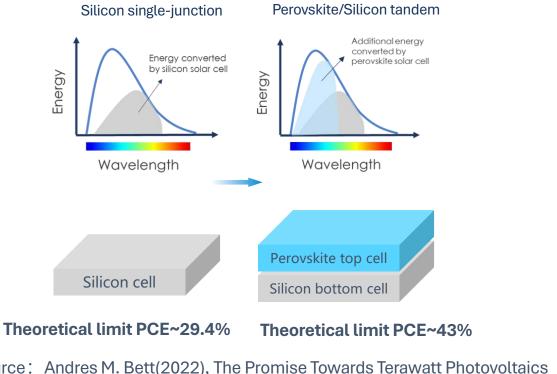
**Residential Rooftop** 

Up to **650W** 

Medium format module

**C&I Rooftop, Ground-Mount, and Utility** 

740W


Large format module

**Large-Scale Utility** 

# **Pushing the Limits: Tandem Technology**

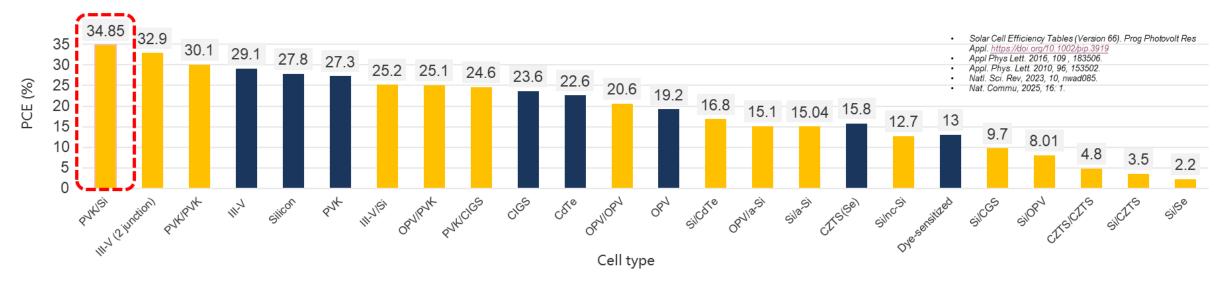


Single-junction cells are approaching practical efficiency limits of 29.4%. Tandem solar cell technology enables potential cell efficiency of **up to 43**% by expanding conversion potential of solar wavelengths.



Source: Andres M. Bett(2022), The Promise Towards Terawatt Photovoltaics Green et al. PIP 2025 (0) P1-16 Oxford PV(2021)

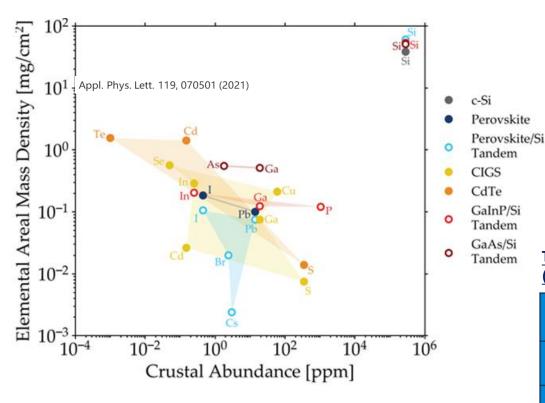
| Cell   | Lab<br>champion | Industrial average | Eff. gain     |
|--------|-----------------|--------------------|---------------|
| Al-BSF | ~21%            | ~20%               |               |
| PERC   | 25%             | ~24%               | +4%           |
| TOPCon | 26.6%           | ~26%               | +2%           |
| HJT    | 27.1%           | ~26.2%             | L< <b>1</b> % |
| TBC    | 27%             | ~26.5%             | - 190         |
| HBC    | 27.8%           | 26.8%              | ا<br>ر        |
| Tandem | ~35%            | >31%               | +5%           |

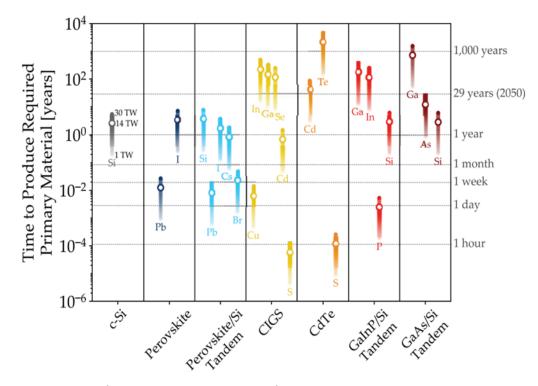

# **Perovskite + Silicon: Superior Combination**



Perovskite/Silicon 2-Terminal tandem cells can achieve the highest Power Conversion Efficiency (PCE) among other 2-Junction Tandem PV technologies.






#### **Perovskite + Silicon: Abundant and Cost-Effective**



Perovskite/Silicon 2-Terminal tandem cell materials are considerably more abundant than competing technologies and offer shorter production time horizons.





Time to Produce 1TW of Primary PV Absorber Material (assuming 100% market share of a single technology)

| PV Technology          | Silicon | Perovskite | Perovskite<br>/Si Tandem | Cadmium<br>Telluride | CIGS     | GaAs/Si<br>Tandem | GalnP/Si<br>Tandem |
|------------------------|---------|------------|--------------------------|----------------------|----------|-------------------|--------------------|
| Controlling<br>Element | Si      | I          | Si                       | Te                   | In       | Ga                | Ga                 |
| Required Time          | 1 year  | 1 year     | 1 year                   | 100 years            | 20 years | 80 years          | 20 years           |

## **Trina's Tandem Cell Performance: Record-Setting Efficiencies**



From Jun. 2024 to Mar. 2025, the efficiency of the 210 half-cell was increased from 26.24% to more than 32%



# **Tandem Module Performance: Breaking the 30% Barrier**

April 2025 – Trina Solar sets new world record for perovskite/silicon tandem solar module efficiency of 30.6%

Independently certified by Fraunhofer ISE, included in 《Solar Cell Efficiency Tables》 (Version 66)

Perovskite/Si 30.6±1.3e 1185.6 (da) 11.783 3.578a 86.1 FhG-ISE (4/25) Trina [52]



1185.6 cm<sup>2</sup> (2x3 cells)

| Classification        | Effic. (%)             | Area (cm <sup>2</sup> ) | V <sub>oc</sub> (V) | I <sub>sc</sub> (A) | FF (%)    | Test Centre (date) | Description                     |
|-----------------------|------------------------|-------------------------|---------------------|---------------------|-----------|--------------------|---------------------------------|
| Si (crystalline)      | 26.0 ± 0.3             | 18,156 (da)             | 40.38               | 13.896 <sup>d</sup> | 84.0      | NREL (12/24)       | LONGi, HBC [4]                  |
| i (crystalline)       | $25.4 \pm 0.4$         | 16,279 (ap)             | 56.09               | 8.58ª               | 86.0      | FhG-ISE (12/24)    | Trina, HJT [64]                 |
| aAs (thin-film)       | $25.1\pm0.8$           | 866.45 (ap)             | 11.08               | 2.303 <sup>b</sup>  | 85.3      | FhG-ISE (11/17)    | Alta Devices [65]               |
| IGS (Cd-free)         | $19.2 \pm 0.5$         | 841 (ap)                | 48.0                | 0.456 <sup>c</sup>  | 73.7      | AIST (1/17)        | Solar Frontier (70 cells) [66]  |
| 'dTe (thin-film)      | $19.9 \pm 0.3$         | 23,932 (da)             | 231.5               | 2.675ª              | 77.1      | NREL (6/23)        | First Solar [67]                |
| erovskite             | $19.2 \pm 0.4^{e}$     | 1027 (da)               | 59.4                | 0.4307 <sup>d</sup> | 77.1      | NREL (12/23)       | SolaEon [68]                    |
| rganic                | $13.1 \pm 0.3^{f}$     | 1475 (da)               | 48.10               | 0.6015              | 67.0      | NREL (5/23)        | Waystech/Nanobit [69]           |
| fultijunction         |                        |                         |                     |                     |           |                    |                                 |
| InGaP/GaAs/InGaAs     | $32.65 \pm 0.7$        | 965 (da)                | 24.30               | 1.520 <sup>h</sup>  | 85.3      | AIST (2/22)        | Sharp (40 cells; 8 series) [70] |
| Perovskite/Si         | $30.6 \pm 1.3^{\circ}$ | 1185.6 (da)             | 11.783              | 3.578ª              | 86.1      | FhG-ISE (4/25)     | Trina [52]                      |
| Perovskite/Si (large) | 26.9 ± 1.0°            | 16,023 (da)             | 56.18               | 9.456 <sup>d</sup>  | 81.1      | FhG-ISE (6/24)     | Oxford PV [71]                  |
| a-Si/nc-Si (tandem)   | $12.3\pm0.3^{\rm i}$   | 14,322 (t)              | 280.1               | $0.902^{j}$         | 69.9      | ESTI (9/14)        | TEL Solar, Trubbach Labs [72    |
| Notable Exceptions'   |                        |                         |                     |                     |           |                    |                                 |
| CIGS (large)          | $18.6\pm0.6$           | 10,858 (ap)             | 58.00               | 4.545 <sup>k</sup>  | 76.8      | FhG-ISE (10/19)    | Miasole [73]                    |
| InGaP/GaAs//Si        | $33.7 \pm 0.7$         | 775 (da)                | 20.3/2.83           | 1.25/1.93           | 86.5/78.0 | AIST (2/23)        | Sharp/Toyota TI, 4-term [74]    |
| InGaP/GaAs//CIGS      | $31.2 \pm 0.7$         | 778 (ap)                | 20.3/16.9           | 1.24/.268           | 85.7/59.8 | AIST (2/23)        | Sharp/Idemitsu, 4-term [74].    |
| Perovskite (large)    | $18.1 \pm 0.6^{\circ}$ | 7218 (t)                | 93.56               | 1.876ª              | 74.4      | NREL (1/25)        | UtmoLight [75]                  |

The world's first tandem module with efficiency > 30%

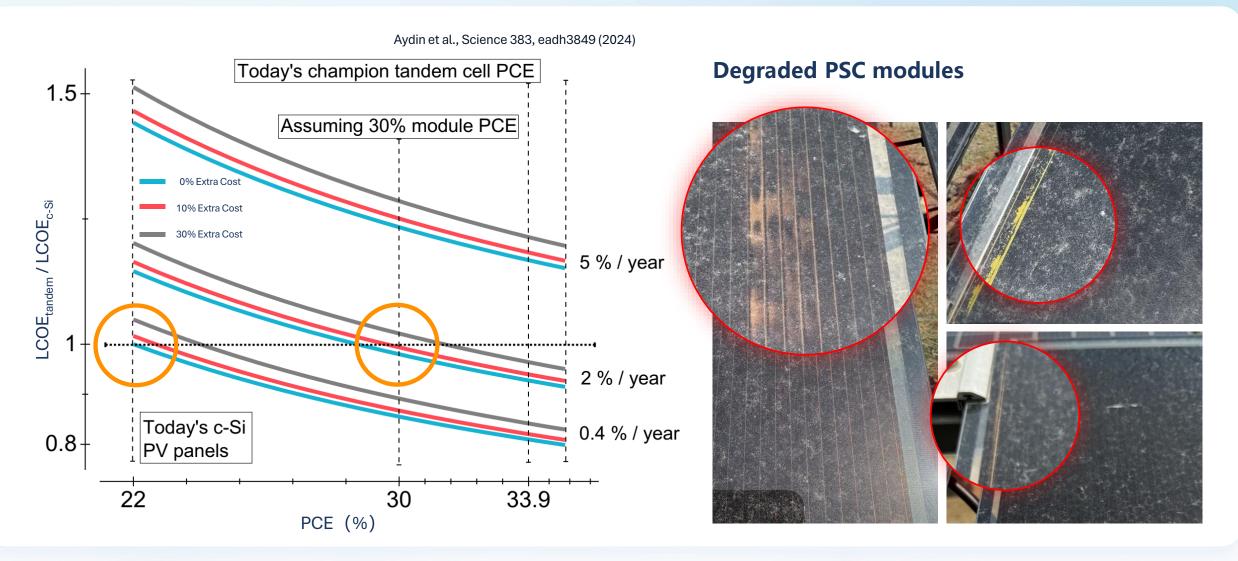


#### **Full-Size Tandem Module Prototype**



The world's **first industrially-sized** perovskite/ silicon tandem module was officially unveiled with certified power of **808W** on Nov. 2024. It was upgraded to **829W** in May 2025 and **841W** in June 2025.




- 210mm half-cut tandem cells
- The world's first commercially-sized module with power >800 W
- The world's first commercially-sized perovskite/silicon tandem module (2384×1303 mm²)
- Performance verified by TÜV SÜD Certified Testing Lab

| Date                            | Total area<br>(m²) | / <sub>sc</sub><br>(A) | <i>V</i> ₀c<br>(V) | <i>FF</i><br>(%) | P <sub>max</sub><br>(W) |
|---------------------------------|--------------------|------------------------|--------------------|------------------|-------------------------|
| Nov. 2024                       | 3.1                | 7.547                  | 135.7              | 78.93            | 808                     |
| May 2025                        | 3.1                | 7.535                  | 135.9              | 81.05            | 829                     |
| Latest<br>Record<br>(June 2025) | 3.1                | 7.602                  | 136.1              | 81.35            | 841                     |

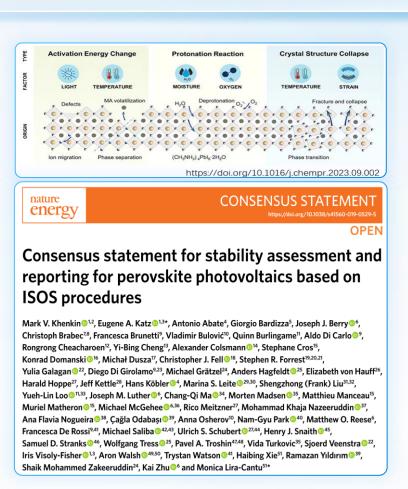
## **Technical Challenges of Perovskite Solar Cells**



- Perovskite Silicon cells have demonstrated stability issues leading to excessive degradation
- Tandem modules of 30% PCE lose their LCOE advantage over silicon counterparts if the annual degradation surpasses 2%



## **Technical Challenges of Perovskite Solar Cells**

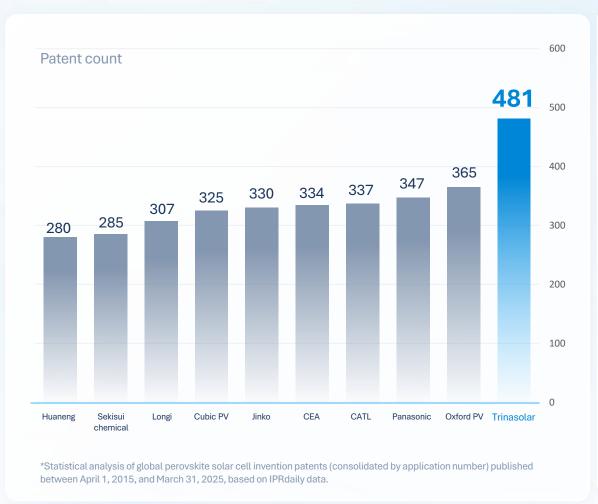



Conventional IEC 61215 testing fails to properly evaluate perovskite PV stability. Dedicated standards addressing perovskite-specific degradation pathways are urgently needed.

No proven accelerated tests + limited outdoor proof = perovskite reliability unknowns.








Consensus
ISOS testing
procedures

#### **IP Leadership and Collaboration**



Trinasolar leads the world with 481 patent applications and has established a key strategic intellectual property collaboration with Oxford PV.



# Oxford PV, Trina Solar enter patent licensing agreement for perovskite-silicon tandem solar

The exclusive license agreement covers the manufacture or sale of perovskite PV products for the Chinese market. A statement from Oxford PV says the agreement "underscores the industry consensus that perovskite-based PV technologies are the future of solar."

APRIL 9, 2025 PATRICK JOWETT

LEGAL MANUFACTURING MARKETS MODULES & UPSTREAM MANUFACTURING
TECHNOLOGY TECHNOLOGY AND R&D CHINA









## **Summary**



- TOPCon Ultra offers cell efficiency increases >1.0% and power increases >30W
- Tandem cells raise practical cell efficiency maximum to 37.76%
- Perovskite + silicon tandem cells offer the highest-efficiency and most cost-effective solution among tandem cell combinations
- Trinasolar's 210mm half-cut tandem cells set consecutive cell-efficiency records of 31.1% and 32.2%
- Trinasolar broke the 30% module efficiency barrier with a certified module efficiency of **30.6**%
- Trinasolar unveiled the world's first commercially-sized perovskite/silicon tandem module to surpass 800W,
   achieving certified power outputs of 808W—now further improved to 841W.
- Key challenges for perovskite tandems: Stability & Standardization
- Trinasolar leads the way in tandem perovskite IP through patents and partnerships

