

Bigger cells, less Ag

Chen et al., *Prog. Photovolt. Res. Appl.* 2023;31:1194–1204

Wafer size M10, G12

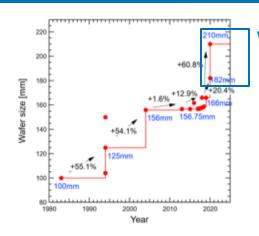

Solar Cell Efficiency Tables, version 66.

TABLE 2 | 'Notable exceptions' for single-junction cells and submodules: 'Top dozen' confirmed results, not class records, measured under the global AM1.5 spectrum (1000 Wm⁻²) at 25°C (IEC 60904-3:2008 or ASTM G-173-03 global).

Classification	Efficiency (%)	Area (cm²)	$V_{oc}(V)$	$J_{sc}(mA/cm^2)$	Fill Factor (%)	Test centre (date)	Des cription
Cells (silicon)							
Si (PERC)	25.0±0.5	4.00 (da)	0.706	42.7*	82.8	Sandia (3/99)	UNSW, p-type [28]
Si (p-TOP Con)	26.0±0.5 ^b	4.015 (da)	0.7323	42.05°	84.3	FhG-ISE (11/19)	FhG-ISE, p-type [29]
Si (p-TBC)	26.1 ± 0.3 ^b	3.9857 (da)	0.7266	42.62 ^d	84.3	ISFH (2/18)	ISFH, p-type [30]
Si (large PERC)	24.1±0.4°	441.3 (t)	0.6997	41.79 [£]	82.3	ISFH (12/24)	Trina p-type [31]
Si (large TOPCon)	26.4 ± 0.48	334.9 (t)	0.7412	42.38 ^f	84.0	ISFH (5/25)	Jinko, n-type [32]
Si (large TBC)	27.0 ±0.5 h	350.0 (t)	0.7447	42.32	8.5.8	ISFH (8/24)	LONGi, n-type [4]
Si (large HJT)	26.8±0.4	274.4(t)	0.7514	41.45 ^k	86.1	ISFH (10/22)	LONGi, n-type [33]
Si (large p-HJT)	26.6±0.4	274.1 (t)	0.7513	41. 30 ^k	8.5.6	ISFH (10/22)	LONGi, p-type [34]

Green et al., Prog. Photovolt. Res. Appl., 2025; 0:1-16

Bigger cells, less Ag

Chen et al., *Prog. Photovolt. Res. Appl.* 2023;31:1194–1204

Wafer size M10, G12


Solar Cell Efficiency Tables, version 66.

TABLE 2 | 'Notable exceptions' for single-junction cells and submodules: 'Top dozen' confirmed results, not class records, measured under the global AM1.5 spectrum (1000 Wm⁻²) at 25°C (IEC 60904 3:2008 or ASTM G-173-03 global).

Classification	Efficiency (%)	Area (cm²)	$V_{oc}(V)$	$J_{sc}(mA/cm^2)$	Fill Factor (%)	Test centre (date)	Des cription
Cells (silicon)							
Si (PERC)	25.0±0.5	4.00 (da)	0.706	42.7°	82.8	Sandia (3/99)	UNSW, p-type [28]
Si (p-TOP Con)	26.0±0.5 ^b	4.015 (da)	0.7323	42.05°	84.3	FhG-ISE (11/19)	FhG-ISE, p-type [29]
Si (p-TBC)	$26.1 \pm 0.3^{\circ}$	3.9857 (da)	0.7266	42.62 ^d	84.3	ISFH (2/18)	ISFH, p-type [30]
Si (large PERC)	24.1±0.4°	441.3 (t)	0.6997	41.79 [£]	82.3	ISFH (12/24)	Trina p-type [31]
Si (large TOPCon)	26.4 ± 0.4^{g}	334.9 (t)	0.7412	42.38 ^f	84.0	ISFH (5/25)	Ji nko, n-type [32]
Si (large TBC)	27.0 ±0.5 ^h	350.0(t)	N 44 C	1 CDD //10	. 10) DD	ISFH (8/24)	LONGi, n-type [4]
Si (large HJT)	26.8±0.4	274.4(t)	INITO) 16BB/(10	+10) BB	ISFH (10/22)	LONGi, n-type [33]
Si (large p-HJT)	26.6±0.4	274.1(t)	0.7513	41.30 ^k	8.5. 6	ISFH (10/22)	LONGi, p-type [34]

Green et al., Prog. Photovolt. Res. Appl., 2025; 0:1-16

Bigger cells, less Ag

Chen et al., *Prog. Photovolt. Res. Appl.* 2023;31:1194–1204

Wafer size M10, G12

Solar Cell Efficiency Tables, version 66.

TABLE 2 | 'Notable exceptions' for single-junction cells and submodules: Top dozen' confirmed results, not class records, measured under the global AM1.5 spectrum (1000 Wm⁻²) at 25°C (IEC 60904 3:2008 or ASTM G-173-03 global).

Classification	Efficiency (%)	Area (cm²)	$V_{oc}(V)$	J _{sc} (mA/cm ²)	Fill Factor (%)	Test centre (date)	Des cription
Cells (sílicon)							
Si (PERC)	25.0±0.5	4.00 (da)	0.706	42.7*	82.8	Sandia (3/99)	UNSW, p-type [28]
Si (p-TOP Con)	26.0±0.5b	4.015 (da)	G12	OBB/16BB,	Pmay-10	SE (11/19)	FhG-ISE, p-type [29]
Si (p-TBC)	26.1 ± 0.3 ^b	3.9857 (da)	/ 612	. UDD/ 10DD,	Piliax-10.	H (2/18)	ISFH, p-type [30]
Si (large PERC)	24.1±0.4°	441.3 (t)	0.6997	41.79 [£]	82.3	ISFH (12/24)	Trina p-type [31]
Si (large TOPCon)	26.4 ± 0.48	334.9 (t)	0.7412	42.38 ^f	84.0	ISFH (5/25)	Jinko, n-type [32]
Si (large TBC)	27.0 ±0.5h	350.0(t)	0.7447	42.321	85.8	ISFH (8/24)	LONGi, n-type [4]
Si (large HJT)	26.8±0.4	274.4(t)	0.7514	41.45 ^k	86.1	ISFH (10/22)	LONGi, n-type [33]
Si (large p-HJT)	26.6±0.4	274.1 (t)	0.7513	41.30 ^k	85.6	ISFH (10/22)	LONGi, p-type [34]

Green et al., Prog. Photovolt. Res. Appl., 2025; 0:1-16

PVCe IITech 2025 NREL

Summary of this talk

What: challenges of measuring performance of industrial large area silicon cells

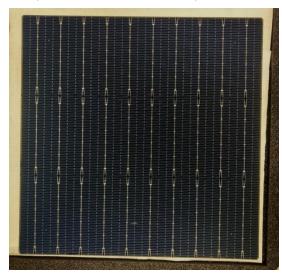
Why: not just for efficiency records!

Accurate performance rating at a cell line is critical for

- Quality control
- Comparing production cells against champion lab cells
- Calculating cell to module losses
- Calculating \$/W

- 1. Use Calibration Standard (aka Reference Cell) to set light level
- 2. Place Cell on temperature-controlled stage
- 3. 4-wire connection (I-loop and V-sense) to the test cell
- 4. Sweep IV

PVCe IITech 2025 NREL


- Use Calibration Standard (aka Reference Cell) to set light level
- Place Cell on temperature-controlled stage
- 4-wire connection (I-loop and V-sense) to the test cell
- Sweep IV

At the factory: same cell as production cells. Avoids spectral and uniformity

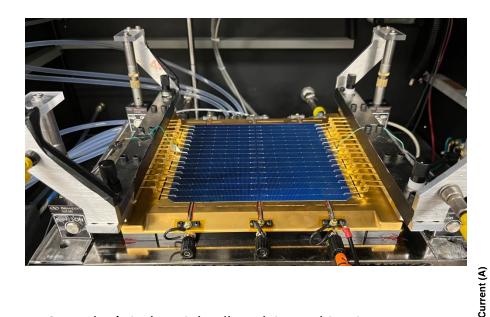
corrections (applied at the time of calibration).

NREL | 7 PVCellTech 2025

- 1. Use Calibration Standard (aka Reference Cell) to set light level
- 2. Place Cell on temperature-controlled stage
- 3. 4-wire connection (I-loop and V-sense) to the test cell ← Where do you contact a m-BB cell?
- 4. Sweep IV

- 1. Use Calibration Standard (aka Reference Cell) to set light level
- 2. Place Cell on temperature-controlled stage
- 3. 4-wire connection (I-loop and V-sense) to the test cell ← Where do you contact a m-BB cell?

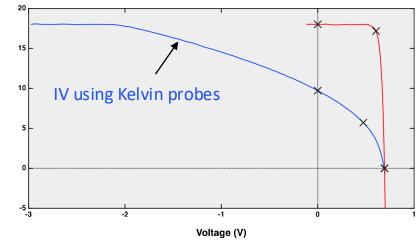
 Where do you contact a OBB cell?
- 4. Sweep IV



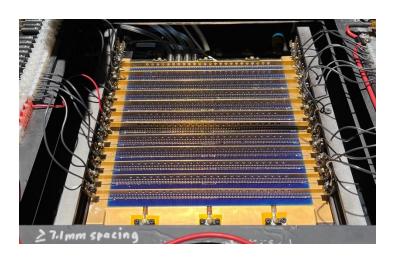
- 1. Use Calibration Standard (aka Reference Cell) to set light level
- 2. Place Cell on temperature-controlled stage
- 3. 4-wire connection (I-loop and V-sense) to the test cell ← Where do you contact a m-BB cell?

 Where do you contact a OBB cell?
- 4. Sweep IV What about the back side for bifacial cells?

Contacting requirement: must be representative of the cell in the module


Probing Silicon PV Cells: option 1

On today's industrial cells Kelvin probing is **not** representative of the cell in a module

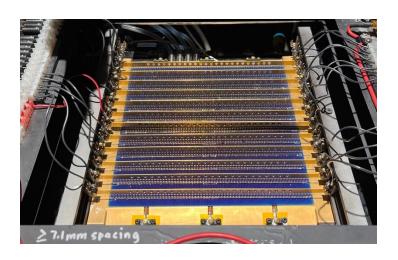

Kelvin probes:

- Minimal shadow on the cell.
- Severe series resistance limitation on FF for narrow BBs. X
- Not applicable to OBB cells. X

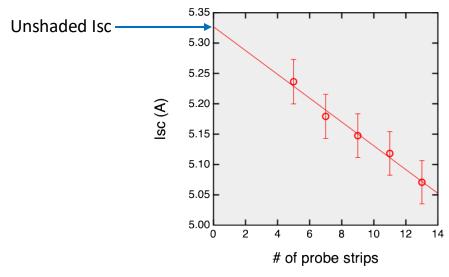
PVCe IITech 2025 NREL

Probing Silicon PV Cells: option 2

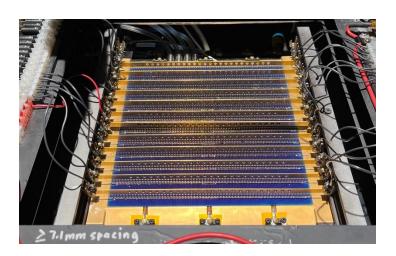
Continuous probing bars:


- Busbar Resistance Neglecting (brn) –
 Can be representative of the cell in a module. ✓
- Reproducibility of contacting narrow busbars 🎺
- Significant shadow on the cell (>5%) X

Bothe et al., 37th EUPVSEC, 2020 Rauer at al., Solar Energy Materials and Solar Cells, 248 (2022) 111988 Rauer et al., Solar RRL, 2023, 2300873


PVCeIITech 2025 NREL

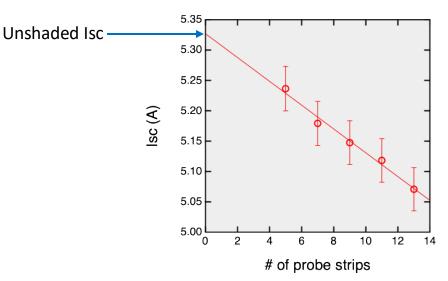
Probing Silicon PV Cells: option 2


Continuous probing bars:

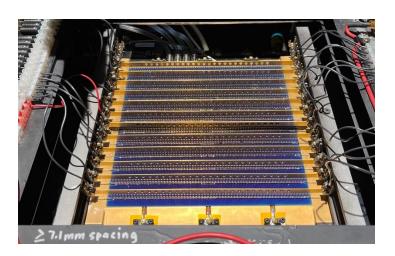
- Busbar Resistance Neglecting (brn) –
 Can be representative of the cell in a module. ✓
- Reproducibility of contacting narrow busbars
- Significant shadow on the cell (>5%) X

PVCeIITech 2025 NREL

Probing and measurement protocol



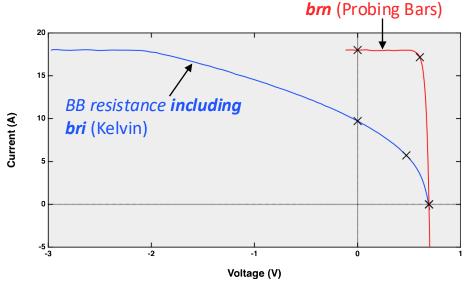
Measurement sequence:


- Determine shadow-free Isc by extrapolation vs. # of probes (one IV per set-up)
- 2. Align 1 probe per BB
- Set light level to achieve Isc from 1
- 4. Sweep IV *brn* measurement condition

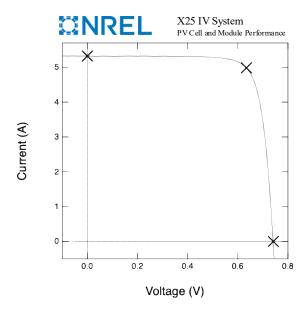
Continuous probing bars:

- Busbar Resistance Neglecting (brn) –
 Can be representative of the cell in a module. ✓
- Reproducibility of contacting narrow busbars 🗸
- Significant shadow on the cell (>5%) can be corrected

Probing and measurement protocol

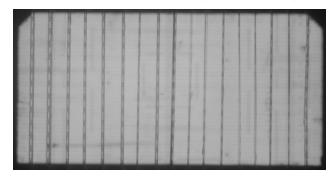


Measurement sequence:


- Determine shadow-free Isc by extrapolation vs. # of probes (one IV per set-up)
- 2. Align 1 probe per BB
- 3. Set light level to achieve Isc from 1
- 4. Sweep IV *brn* measurement condition

Continuous probing bars:

- Busbar Resistance Neglecting (brn) –
 Can be representative of the cell in a module. ✓
- Reproducibility of contacting narrow busbars 🎺
- Significant shadow on the cell (>5%) can be corrected ✓


Probing and measurement protocol

 $V_{OC} = (0.7420 \pm 0.0019) \text{ V}$ $I_{SC} = (5.322 \pm 0.032) \text{ A}$ $J_{SC} = (38.85 \pm 0.24) \text{ mA/cm}^2$ Fill Factor = (80.12 ± 0.72) %
$$\begin{split} I_{\text{max}} &= (4.986 \pm 0.031) \text{ A} \\ V_{\text{max}} &= (0.6347 \pm 0.0013) \text{ V} \\ P_{\text{max}} &= (3.164 \pm 0.028) \text{ W} \\ \text{Efficiency} &= (23.10 \pm 0.14) \% \end{split}$$

Continuous probing bars:

- Busbar Resistance Neglecting (brn) –
 Can be representative of the cell in a module. ✓
- Reproducibility of contacting narrow busbars
- Significant shadow on the cell (>5%) can be corrected ✓
- Applicable to 0BB cells
 - The probing bars become the BBs
 - Uniform contacting verified by EL
 - Same measurement sequence
 - Weak dependence on probing bar spacing

Summary

- Measurement sequence to obtain shadow-free lsc and "brn" FF
 - Calibration-quality IV measurements
 - Reliable input for CTM losses
 - Good agreement in interlaboratory comparison
- Scope:
 - Calibrate production line cells as reference (golden) cells for factory tester set-up
 - Performance certification under ISO standards
- (Back contact cells, such as IBC, is another story, but basic principles still apply)

NREL's PV Cell and Module Performance Group

- Independent performance testing of PV cells and modules since 1980
- All industrial and emerging PV technologies
- ISO 17025 accredited for reference cell and reference module calibrations
- Available to anyone via a web submission portal
- https://www.nrel.gov/pv/pvdpc/

Acknowledgements

NREL ISFH

Chuck Mack Karsten Bothe
Rafell Williams David Hinken
Idris Davis

Jeremy Brewer Funding

Tao Song DOE Solar Energy Technologies Office

nikos.kopidakis@nrel.gov