

## Noise Mitigation in Battery Storage

Richard A. Batty – Technical Manager

February 2025





#### Key Facts \*







Industry Knowledge



**Local Teams** 







\*Figures updated as of December 2024

**Excellent Track** 

Record

#### **The Challenge**



The UK is a condensed area compared to global site opportunities



Battery storage sites are moving closer to towns and cities



Proximity to residential & commercial areas requires enhanced planning conditions

Noise becomes an issue



A solution is needed to mitigate noise with minimal effect to overall CAPEX





# **Site Selection**

STRICTLY CONFIDENTIAL

## **Coalburn, Scotland**

## 500MW / 1GWh



## **Sound - Basic Terminology**

0

Sound Power Level (LWA) is the acoustic energy emitted by a source which produces a Sound Pressure Level (LPA) at some distance.



While the sound power level of a source is fixed, the sound pressure level depends upon the distance from the source. Both are measured in dB so can be easily confused.



The sound pressure level may be measured as a single overall value, we use the dBA (A weighted scale to match human hearing), to provide an indication of how loud the sound may appear to a listener.



A doubling of sound pressure level corresponds to an increase of +6 dB.



A 10 dB increase in the sound pressure level corresponds to a doubling of the perceived loudness of a sound.

#### What are the requirements?

Typical requirements as follows:

The requirement for Measurement points are Normally expressed as often defined as noise planning consent is for the background noise level (or BESS plant not to increase sensitive receptors which background noise + 5 noise compared to before are typically houses dB(A) if lucky! surrounding the site. construction. The challenge is to meet As a manufacturer and A noise consultant will be

The challenge is to meet the required noise level at night – because background noise level is lower. As a manufacturer and systems integrator our challenge is to minimise the noise of the equipment by design.

A noise consultant will be involved to model the noise from the planned BESS and to ensure planning requirements will be met.

#### How do we meet the Noise requirements?

The approach is as follows:









# How much noise does the battery make?

#### Look at the datasheet

#### e-STORAGE A subsidiary of Canadian Solar

#### UTILITY-SCALE ENERGY STORAGE

#### **Storage Block**

ENERGY STORAGE SYSTEM S-5016-2H-EU|S-5016-4H-EU

Capacity: 5.0 MWh

e-STORAGE, a subsidiary of Canadian Solar, is a world-class energy storage solution provider, specializing in storage system design, manufacturing, and integration of battery energy storage systems for utility-scale applications.

The company offers value-added system consulting and turnkey EPC services, in addition, we provide customers with our proprietary LFP battery solution SolBank.

Together, we are building a brighter, greener future for all.

#### **Key Features**

#### **Enhanced Energy Density**

- · Utilizes 314 Ah battery cells and compact integration, increases single container energy density up to 45%
- Reduces land cost by up to 35% in a 100MWh project

#### Safety

- IP67-rated pack design
- · Up to 20% faster detection of abnormal and automatic protection
- Advanced pack thermal isolation, electrical redundancy protection, and multi-level fire protection, effectively minimize potential issues

#### **Intelligent Control**

safety and performance criteria.

Storage Block 3.0 Highlights

 Liquid cooling cuts auxiliary consumption up to 30% Active balance and string-level management. guarantee high efficiency and availability

• Cutting-Edge Technology: Storage Block 3.0 features

high-density LFP cells, an active balancing BMS, and an

innovative liquid cooling TMS, ensuring optimal safety.

Compliance and Certifications: Storage Block 3.0

adheres to all industry standards: IEC 62619, IEC 63056,

IEC 62477-1, IEC 62933-5-2, IEC 61000-6-2, UL 9540A,

NFPA 855, NFPA 69, UN38.3/UN3536, ensuring rigorous

#### **Compatibility & Installation**

- Supports various PCS topologies · Turn-key integration and stationery certification, reduce project schedule risks by up to 40%
- Plug-and-play setup for streamlined commissioning



1. The unit is rated at 1164.8V-1497.6V for optimized product performance, the maximum voltage range for the battery system is 1060.8V-1497.6V 2. Rated DC Power is measured at the product DC terminal, the Rated DC Power and Initial Storage Capacity is limited to the use of two Storage Block 3.0 units

Storage Block 3.0

System Parameter

General

Product Model

Battery Chemistry

Pack Configuration

Rack Configuration

System Configuration

Nominal DC Voltage

Performance

Initial Storage Capacity

Duration @Rated Power

Storage Block 3.0

**Circuit Diagram** 

Fore Inc.(-)

Notes

Round Trip Efficiency (RTE)

Rated DC Power

parallel 3. Initial Storage Capacity is the usable product capacity at FAT, contact e-STORAGE for capacity at COD per project schedule 4. DC RTE is measured during capacity test at Rated DC Power, refer to the product warranty document for the complete pro

Due to ongoing innovation, improvements, and product enhancements, the technical specifications in this document are subject to change and are not guaranteed. Canadam Solar reserves the right to update or change its products or this technical data without prior notice and customers should not rely upon these or any tech specifications within are not made part of a definitive binding agreement.

#### Noise @1m distance

ni he

#### ≤ 75 dB @1m distance

## **SPL determined by measurement**





## 100% fan speed

| . <b>.</b> |      |      | <br>     |      |      | <br> | <br> |        |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------------|------|------|----------|------|------|------|------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|            |      |      |          |      |      |      |      |        | 1m   | 2m   | 3m   | 4m   | 5m   | 6m   | 7m   | 8m   | 9m   | 10m  | 15m  | 30m  | 50m  |
| 10m        |      |      |          |      |      |      | 55.5 |        |      |      |      |      |      |      |      |      |      |      |      |      |      |
|            |      |      |          |      |      |      |      |        |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 2m         |      |      | 55.8     |      |      | 60.9 |      |        |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1m         |      | 56.7 | 60.2     |      | 56.1 | 56.7 | 65.3 |        | 71.1 | 69.8 |      |      |      |      |      |      |      |      |      |      |      |
|            |      |      |          |      |      |      |      |        |      |      |      |      |      |      |      |      |      |      |      |      |      |
|            | 55.1 | 53.8 |          |      |      |      |      |        |      |      |      |      |      |      |      |      |      |      |      |      |      |
|            |      |      |          |      |      |      |      | -      | 77.6 | 74.6 | 70.8 | 71.1 | 67.6 | 66.7 | 64.1 | 64.5 | 62.1 | 61.6 | 59.1 | 55.8 | 54.2 |
|            | 53.4 | 53.6 |          |      |      |      |      | 8<br>8 |      |      |      |      |      |      |      |      |      |      |      |      |      |
|            |      |      |          | 0000 |      |      |      |        |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1m         |      | 53.9 | 54.0     |      | 58.3 | 60.2 | 65.3 |        | 70.7 | 70.9 |      |      |      |      |      |      |      |      |      |      |      |
| 2m         |      |      | <br>55.9 |      |      | 57.9 |      |        |      |      |      |      |      |      |      |      |      |      |      |      |      |
|            |      |      |          |      |      |      |      |        |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 10m        |      |      |          |      |      |      | 54.8 |        |      |      |      |      |      |      |      |      |      |      |      |      |      |

## What about the PCS?



## e-Storage MV-Skid-5160 solution



#### SKID solution 5.16MVA/5.16MW:

- o CSI inverters 215kVA x 24
- Tier 1 MV Switchgear
- Tier 1 MV transformer 15,20,30,33kV

#### Benefits:

- 3L Optimization for E-Storage BESS solutions
- Safe and eco-friendly
- Ultra-low noise (<65dB)
- Substantial BOP cost savings.
- High availability.

## PCS String Skid – 100% fan speed

| 7m | 10m  | 9m   | 8m   | 7m   | 6m   | 5m   | 4m   | 3m   | 2m   | 1m   |      |          |          |      | 1m   | 2m   | 3m   | 4m   | 5m   | 6m   | 7m   | 8m   | 9m   | 10m  |
|----|------|------|------|------|------|------|------|------|------|------|------|----------|----------|------|------|------|------|------|------|------|------|------|------|------|
| 6m |      |      |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |      |      |      |      |
| 5m |      |      |      |      |      | 50.6 |      |      |      |      | 50.6 |          |          | 50.1 |      |      |      |      | 50.6 |      |      |      |      |      |
| 4m |      |      |      |      |      |      | 51.7 |      |      |      | 51.7 |          |          | 51.7 |      |      |      | 52.0 |      |      |      |      |      |      |
| 3m |      |      |      |      |      |      |      | 53.0 |      |      | 53.2 |          |          | 53.1 |      |      | 53.5 |      |      |      |      |      |      |      |
| 2m |      |      |      |      |      |      |      |      | 56.3 |      | 55.8 |          |          | 54.6 |      | 54.0 |      |      |      |      |      |      |      |      |
| 1m |      |      |      |      |      |      |      |      |      | 56.1 | 57.3 | 56.8     | 57.4     | 56.9 | 56.6 |      |      |      |      |      |      |      |      |      |
|    | 50.5 | 50.5 | 50.7 | 51.0 | 51.4 | 53.5 | 54.1 | 54.7 | 56.2 | 58.2 |      |          | ij.      |      | 58.3 | 56.4 | 55.2 | 53.9 | 53.6 | 51.2 | 51.2 | 50.0 | 49.5 | 48.8 |
|    |      |      |      |      |      |      |      |      |      | 58.6 |      |          |          |      | 60.1 |      |      |      |      |      |      |      |      |      |
|    | 50.4 | 50.3 | 49.4 | 50.6 | 51.3 | 52.3 | 54.4 | 55.3 | 57.4 | 59.9 |      | $\vdash$ | Ĭ        |      | 60.8 | 57.5 | 55.7 | 54.6 | 54.1 | 52.3 | 51.2 | 50.5 | 49.9 | 49.5 |
|    | 50.1 | 49.2 | 49.7 | 51.1 | 51.7 | 53.0 | 54.0 | 55.1 | 57.2 | 60.1 |      |          |          | ]    | 60.3 | 57.6 | 55.6 | 54.5 | 54.4 | 51.9 | 51.3 | 50.9 | 49.5 | 49.2 |
|    |      |      |      |      |      |      |      |      |      | 59.8 |      | {        | Ĭ        |      | 59.6 |      |      |      |      |      |      |      |      |      |
|    | 50.5 | 48.9 | 48.9 | 49.9 | 51.9 | 51.5 | 53.5 | 53.0 | 56.0 | 58.1 |      | L        | <u>H</u> | j –  | 58.2 | 56.2 | 54.8 | 54.1 | 53.5 | 51.5 | 50.7 | 49.4 | 48.8 | 49.2 |
| 1m |      |      |      |      |      |      |      |      |      | 56.3 | 57.3 | 56.6     | 57.8     | 57.2 | 56.7 |      |      |      |      |      |      |      |      |      |
| 2m |      |      |      |      |      |      |      |      | 54.8 |      | 55.8 |          |          | 54.6 |      | 54.2 |      |      |      |      |      |      |      |      |
| 3m |      |      |      | ,    |      |      |      | 52.4 |      |      | 53.3 |          |          | 53.4 |      |      | 52.2 |      |      |      |      |      |      |      |
| 4m |      |      |      |      |      |      | 51.5 |      |      |      | 51.5 |          |          | 52.2 |      |      |      | 51.4 |      |      |      |      |      |      |
| 5m |      |      |      |      |      | 50.1 |      |      |      |      | 50.5 |          |          | 51.3 |      |      |      |      | 51.2 |      |      |      |      |      |
| 6m |      |      |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |      |      |      |      |
| 7m |      |      |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |      |      |      |      |

# Direct the noise away from the houses

## **Project site with houses to the East**



#### UK project example: Initially failed to meet noise requirements

Our solution: through intelligent layout redesign, the noise is pointed away from the adjacent houses (noise receptors)







# **Operational Control**





## SolBank - 80% fan speed



## SolBank - 60% fan speed



## Fan Speed / Ambient Temperature – SolBank 3

| NR mode                | Ambient<br>Temperature deg C | P rate of SolBank 3 | Noise dB(A) | Equivalence                      |
|------------------------|------------------------------|---------------------|-------------|----------------------------------|
| III (80% fan<br>speed) | 35                           | 0.5 (full power)    | 67.0        | UK max daytime<br>temperature    |
| I (60% fan<br>speed)   | 25                           | 0.5 (full power)    | 59.5        | UK max night-time<br>temperature |

## PCS String Skid – 80% fan speed

| 7m | 10m  | 9m   | 8m   | 7m   | 6m   | 5m   | 4m   | 3m   | 2m   | 1m   |      |              |      |      | 1m   | 2m   | 3m   | 4m   | 5m   | 6m   | 7m   | 8m   | 9m   | 10m  |
|----|------|------|------|------|------|------|------|------|------|------|------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 6m |      |      |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |      |      |      |      |      |      |      |
| 5m |      |      |      |      |      | 47.1 |      |      |      |      | 46.7 |              |      | 46.8 |      |      |      |      | 46.2 |      |      |      |      |      |
| 4m |      |      |      |      |      |      | 47.5 |      |      |      | 47.2 |              |      | 47.0 |      |      |      | 47.5 |      |      |      |      |      |      |
| 3m |      |      |      |      |      |      |      | 49.7 |      |      | 49.7 |              |      | 50.6 |      |      | 50.6 |      |      |      |      |      |      |      |
| 2m |      |      |      |      |      |      |      |      | 50.7 |      | 52.0 |              |      | 51.2 |      | 50.9 |      |      |      |      |      |      |      |      |
| 1m |      |      |      |      |      |      |      |      |      | 53.3 | 54.6 | 54.0         | 54.1 | 54.3 | 53.8 |      |      |      |      |      |      |      |      |      |
|    | 46.8 | 47.1 | 47.5 | 48.0 | 48.9 | 49.5 | 50.1 | 51.5 | 52.3 | 55.0 |      | H            | į,   |      | 55.0 | 53.9 | 52.4 | 49.7 | 49.1 | 47.9 | 46.7 | 47.4 | 45.6 | 44.7 |
|    |      |      |      |      |      |      |      |      |      | 55.3 |      |              |      |      | 56.4 |      |      |      |      |      |      |      |      |      |
|    | 45.6 | 46.4 | 45.8 | 46.4 | 48.0 | 48.5 | 49.7 | 51.5 | 53.5 | 56.6 |      | $\mathbb{H}$ |      |      | 56.8 | 54.8 | 53.0 | 50.7 | 49.3 | 49.5 | 47.1 | 47.0 | 45.8 | 45.0 |
|    | 44.5 | 45.9 | 46.2 | 46.2 | 47.5 | 48.5 | 49.7 | 51.8 | 53.8 | 56.9 |      | Ц            |      |      | 57.0 | 54.8 | 52.4 | 50.7 | 49.5 | 49.5 | 47.1 | 47.0 | 45.6 | 44.5 |
|    |      |      |      |      |      |      |      |      |      | 56.4 |      |              |      |      | 56.1 |      |      |      |      |      |      |      |      |      |
|    | 43.6 | 45.5 | 45.3 | 45.9 | 47.6 | 47.2 | 48.8 | 50.7 | 52.4 | 54.5 |      |              |      |      | 54.7 | 53.3 | 51.3 | 49.7 | 48.8 | 48.4 | 47.1 | 45.5 | 45.9 | 43.6 |
| 1m |      |      |      |      |      |      |      |      |      | 52.4 | 53.8 | 53.6         | 54.3 | 53.3 | 52.3 |      |      |      |      |      |      |      |      |      |
| 2m |      |      |      |      |      |      |      |      | 50.6 |      | 51.4 |              |      | 50.9 |      | 50.4 |      |      |      |      |      |      |      |      |
| 3m |      |      |      |      |      |      |      | 49.4 |      |      | 49.5 |              |      | 49.7 |      |      | 49.1 |      |      |      |      |      |      |      |
| 4m |      |      |      |      |      |      | 47.9 |      |      |      | 47.6 |              |      | 47.8 |      |      |      | 47.2 |      |      |      |      |      |      |
| 5m |      |      |      |      |      | 47.1 |      |      |      |      | 47.0 |              |      | 47.0 |      |      |      |      | 46.4 |      |      |      |      |      |
| 6m |      |      |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |      |      |      |      |      |      |      |
| 7m |      |      |      |      |      |      |      |      |      |      |      |              |      |      |      |      |      |      |      |      |      |      |      |      |

## PCS String Skid – 60% fan speed

| 7m | 10m  | 9m   | 8m   | 7m   | 6m   | 5m   | 4m   | 3m   | 2m   | 1m   |      |      |      |      | 1m   | 2m   | 3m   | 4m   | 5m   | 6m   | 7m   | 8m   | 9m   | 10m  |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 6m |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 5m |      |      |      |      |      | 45.8 |      |      |      |      | 46.4 |      |      | 44.5 |      |      |      |      | 42.8 |      |      |      |      |      |
| 4m |      |      |      |      |      |      | 42.6 |      |      |      | 42.2 |      |      | 42.1 |      |      |      | 41.6 |      |      |      |      |      |      |
| 3m |      |      |      |      |      |      |      | 44.7 |      |      | 43.8 |      |      | 43.2 |      |      | 45.5 |      |      |      |      |      |      |      |
| 2m |      |      |      |      |      |      |      |      | 44.8 |      | 46.7 |      |      | 46.2 |      | 47.1 |      |      |      |      |      |      |      |      |
| 1m |      |      |      |      |      |      |      |      |      | 47.2 | 48.7 | 48.0 | 48.2 | 48.2 | 46.7 |      |      |      |      |      |      |      |      |      |
|    | 47.1 | 44.7 | 46.2 | 47.0 | 47.1 | 47.4 | 46.4 | 46.8 | 46.8 | 48.4 |      | H    |      |      | 48.3 | 47.2 | 45.2 | 43.8 | 42.3 | 44.7 | 44.5 | 44.7 | 43.8 | 42.8 |
|    |      |      |      |      |      |      |      |      |      | 48.5 |      |      |      |      | 48.5 |      |      |      |      |      |      |      |      |      |
|    | 44.5 | 42.8 | 45.5 | 44.5 | 45.3 | 44.3 | 43.6 | 44.8 | 46.7 | 48.7 |      | H    |      |      | 50.3 | 47.8 | 46.5 | 46.1 | 44.0 | 46.8 | 45.5 | 43.8 | 44.0 | 44.0 |
|    | 43.4 | 42.6 | 44.3 | 43.0 | 45.0 | 44.7 | 43.6 | 45.0 | 47.0 | 49.1 |      | Ц    |      |      | 49.9 | 47.6 | 46.4 | 45.5 | 43.4 | 45.3 | 46.2 | 45.2 | 43.2 | 42.8 |
|    |      |      |      |      |      |      |      |      |      | 48.7 |      |      |      |      | 49.4 |      |      |      |      |      |      |      |      |      |
|    | 42.9 | 42.8 | 42.8 | 42.5 | 43.4 | 44.5 | 42.7 | 44.0 | 45.6 | 47.4 |      |      |      |      | 47.6 | 45.8 | 44.3 | 42.8 | 42.3 | 45.0 | 47.1 | 45.2 | 44.0 | 43.4 |
| 1m |      |      |      |      |      |      |      |      |      | 46.5 | 47.5 | 46.8 | 48.2 | 46.7 | 45.9 |      |      |      |      |      |      |      |      |      |
| 2m |      |      |      |      |      |      |      |      | 45.2 |      | 45.5 |      |      | 46.4 |      | 43.4 |      |      |      |      |      |      |      |      |
| 3m |      |      |      |      |      |      |      | 44.7 |      |      | 43.2 |      |      | 44.8 |      |      | 44.7 |      |      |      |      |      |      |      |
| 4m |      |      |      |      |      |      | 42.5 |      |      |      | 42.5 |      |      | 43.2 |      |      |      | 41.5 |      |      |      |      |      |      |
| 5m |      |      |      |      |      | 46.2 |      |      |      |      | 41.2 |      |      | 42.2 |      |      |      |      | 41.3 |      |      |      |      |      |
| 6m |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 7m |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |

## Fan Speed / Ambient Temperature – PCS String Skid

| NR mode                | Ambient<br>Temperature deg C | P rate of SolBank 3 | Noise dB(A) | Equivalence                      |
|------------------------|------------------------------|---------------------|-------------|----------------------------------|
| III (80% fan<br>speed) | 35                           | 0.5 (full power)    | 57.0        | UK max daytime<br>temperature    |
| l (60% fan<br>speed)   | 25                           | 0.5 (full power)    | 50.0        | UK max night-time<br>temperature |

## **Summary**

#### **Site Selection**

Select site considering background noise and location of noise sensitive receptors

#### Equipment

Chose equipment with low noise and utilize intelligent design and layout

#### **Operational Control**

Turn down the noise according to temperature to meet noise requirements



Richard A. Batty – Technical Manager Please visit us at Stand 02 to book a Noise Design Workshop