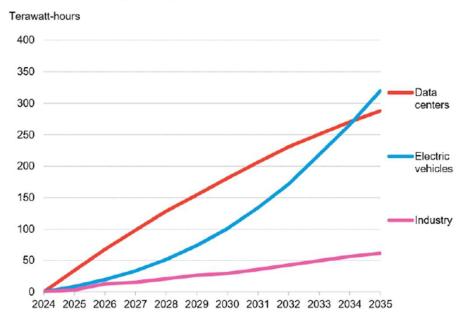


Providing flexibilities with large-scale BESS in industries and datacenters

Michael Lippert


Energy Storage Summit CEE Warsaw, 23 September 2023

We need more...

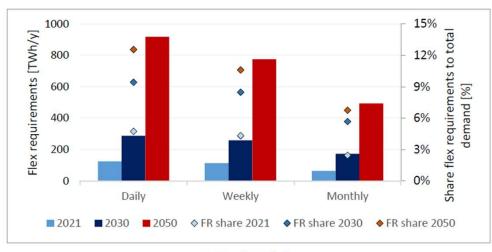

... Power

Figure 1: New electricity demand, Economic Transition Scenario USA

Source: BloombergNEF. Note: Data-center demand refers to total energy demand. BNEF's

... Flexibilities

Source: JRC analysis.

Daily, weekly and monthly flexibility requirements and their share in total demand (FR share) in the EU for 2021, 2030 and 2050

Decarbonized Flexibilities

- PV / Wind shifting
- Arbitrage
- Security of Supply
 - Capacity contracts

- Grid Support
 - Frequency / Inertia Services
 - Congestion / Curtailment avoidance
 - Contingency

Saft Bordeaux factory

TotalEnergies

3 MW / 9 MWh

The project

 Application Industrial Site, 4 MW power connection

 Business Case **Electricity Bill Reduction**

 Operator TotalEnergies

 Status Operational 2025

Our solution

 Scope of Works **Integrated Solution**

Products

Battery

Conversion

• PMS

• EMS

3 I-Shift

SMA

Powerfactors

bamboo energy

I-Sight connected

Revenue generation: two contracts

Power Supply contract

Capacity market Contract

1- Arbitrage

To play on the spread: Charging the battery when the spot prices are low and discharging it to the factory when it is high

2- aFRR (automatic Frequency **Restoration Reserve)**

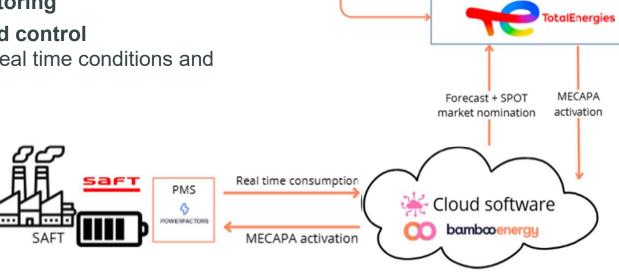
To answer RTE's offer to regulate the frequency to 50Hz.

3- ARENH (Accès Régulé à l'Electricité Nucléaire Historique)

Avoid ARENH penalties

4- Demand Reduction

To answer RTE's offer to reduce site consumption


High level use case architecture

> epexspo

bamboenergy

- Day-ahead (DA) optimal BESS operation considering DA prices and MECAPA probability of activation.
- Site consumption daily forecast (9h30am) considering both the forecasted factory consumption and the battery expected operations.
- Real time site consumption monitoring
- Real time battery optimization and control considering DA optimal operation, real time conditions and minimizing nomination deviations
- Process MECAPA activation and BESS real time control to guarantee compliance
- Logging and reporting of client compliance

MECAPA activation Rte

Technical and Economic Results

Battery parameters	
Average daily battery cycles	0,7
Average battery SoC	43%
Average charging power	566 kW
Average discharging power	-420 kW
Average charging price	36 €/MWh
Average discharging price	105 €/MWh

11% savings on electricity purchase cost

Takeaways

- Replicable and easy to implement model
- "Grid-Friendly"
- **Economic** and **Environmental** Benefits
- ...which can be further enhanced
 - when providing Ancillary services and/or local flexibilities
 - in case consumption profile shows peaks
 - by integrating on-site renewable generation

Datacenters: Challenges beyond Power

Provide clean electricity to large, power hungry DataCenters

Power generation

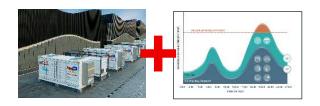
- Satisfy increasing energy consumption
- Deliver clean power = non dispatchable renewables

Grid infrastructure

- Provide Grid connections
- Cope with impact a large single power consumer can have on grids
 - Peaks
 - Variable loads
 - Incidents

The role of Battery Energy Storage

SUSTAINABILITY


- Maximize contribution of clean electricity PPA's
- Integrate local renewable generation

BACKUP

- Substitute diesel generator backup
- Merge UPS and backup functions into single, permanent microgrid

FLEXIBILITY

- Demand reduction: partial or total reduction of power drain from grid
- Grid services: Frequency, Capacity, ...

X-Elio / Brookfield – Bell Solar

100 MW / 246 MWh

Key Points

- Co-located at X-Elio's 128 MW solar PV plant in Texas
- The BESS enables 24/7 clean energy under a PPA with Google

The project

Our solution

- Application Energy Shifting
- Location Texas, USA
- Status under construction
- Completion 2025

- Scope Integrated solution
- Products
 - Battery 82 I-Shift
 - Conversion Power Electronics
- Technology LFP

Press Release

Microsoft - GVX21

TotalEnergies

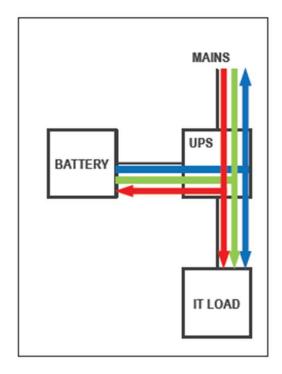
15 MW / 23 MWh

- Data center integration: Replacing diesel generators with battery storage in a large Microsoft data center located in Stackbo, demonstrating the feasibility of powering datacenters with BESS
- Paving the way for wider adoption and a more sustainable digital infrastructure
- Fully-tested configuration: FAT at Saft factory Bordeaux prior to deployment, to ensure performance, reliability and resilience of the system

4 systems of each 4.6 MWh/3MW, 15 year lifetime

80min back-up, holistic safety, arctic conditions Forming of 20kV microgrid

Full system factory test, on-site stress testing Training of maintenance team and fire brigade

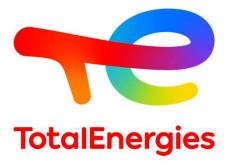


Grid Interactive Datacenter

Implementing Microgrid based on BESS and gridforming PCS enables multiple functions

- Power-Backup
- Optimised use of renewable energy (local or PPA) Elecricity Bill reduction through arbitrage
- Smoothing of load variations
- Ancillary Services
- Demand-response
 - Remunerated flexibility
 - Faster (and less costly) grid connection with flexible power usage contracts

Increase demand (charging) Reduce demand (power sharing) Feed back to grid whilst supporting IT load


Conclusion

- Large Industries and DataCentres evolve from passive power consumers to interacting system participants
- BESS are technically proven solutions, control systems will evolve as new use cases develop
- Viable economic models exist already today
- BESS are critical to enable growth and sustainable grid integration of future datacenters

Thank you!

Saft Energy Storage Solutions 26, quai Charles Pasqua 92300 Levallois-Perret – France

michael.lippert@saft.com

www.saft.com

