



## Case Study

# Innovative Utility-Scale PV Solar + DC-coupled Storage

Examining the End-to-End Power Conversion Solution used in LATAM's largest PV+storage power plant



**Optimize PV Systems** 



DC-Coupled Storage



Software Controls & Monitoring



#### **Hardware Platforms**



AC coupled solar integration



Power Converter Station for **BESS** integration



Advanced Multiport Power Station



Static Synchronous Compensator

#### **Software Platforms**



**EMS** 



**SCADA** 

eks Energy is a leading power conversion system manufacturer focused on grid-friendly energy storage and renewable integration.



#### 5.3 GW+

Installed

30+

Countries with **Deployments** 

180+

**Projects** Deployed 20+ Years

of Experience

#### **Competitive advantages**



AC & DC coupling



Ample range of Operations



Fast response



Open control Platform



**Grid-forming** 

**Droop and Virtual** Synchronous Machine Control

4 GW

Per Year

Manufacturing Capacity

© 2024 Ampt & eks Energy Proprietary & Confidential

## About the Project PV Solar + DC-coupled Energy Storage

Location Andes; Antofagasta; Chile **Ampt String Optimizers** Model of the plant Hybrid: PV + Battery eks Energy Advanced Multiport Rated Power at POI 130 MW Power Station Capacity 650 MWh Inverter and eks Energy Advanced Multiport Power Station battery converter String optimizer Ampt V1475-32-30 Altitude 2700 masl Construction 2020 - 2023



## Smart PV + DC-coupled Storage Solution



## Our Solution Advantage

AC-Coupled Storage

Fixed DC-Coupled Storage





Fewer & lower cost transformer

Lower Cost & Higher Performance

## Higher Voltage, Higher Power Density Inverter







|                             |     | Variable Voltage | High Fixed-Voltage  |        |
|-----------------------------|-----|------------------|---------------------|--------|
| DC (PV array)               |     |                  |                     |        |
| Max DC voltage              | Vdc | 1500             | 1550                |        |
| Voltage range at full power | Vdc | 850 - 1500       | 1350 (Programmable) |        |
| Rated input voltage         | Vdc | 850              | 1350                | Higher |
| Rated input current         | Α   | 6400             | 6400                |        |
| AC (Grid)                   |     |                  |                     |        |
| Nominal AC voltage          | Vac | 600              | 850                 | Higher |
| Rated output current        | Α   | 2080             | 2080                |        |
| Rated AC power              | MVA | 2.0              | 2.8                 | 40% 👚  |
|                             |     |                  |                     |        |

Deploy fewer inverters at a lower cost per watt

## Lower Cost, Higher Efficiency Battery Converter



Advanced Multiport Power Station



Variable Voltage





High Fixed-Voltage



- 50% less circuitry
- Higher power density
- Higher efficiency (+0.5 0.8%)

#### GFM: All Functions/Manageability of Traditional Power Plants

| Feature                                         | GFM | GFL |
|-------------------------------------------------|-----|-----|
| Voltage and Frequency ride through capabilities |     |     |
| Reactive power support                          |     |     |
| Frequency control capabilities                  |     |     |
| Virtual inertia                                 |     | 0   |
| Islanding operation                             |     | 0   |
| System restart                                  |     |     |
| Black start                                     |     | 0   |

Grid-forming mode offers standalone and high and low inertia grid operation

#### Plant Grid-Tied to Islanded



Smooth transition between grid-tied and islanded mode operation

#### Founded in 2007

#### **Award Winning Technology**

#### Market Leadership





DC Power Management
Products & Software



~3 GW shipped

15+
countries with deployments



Gold Winner for Pioneer in New Technology - Storage



Top Ten Energy Storage Solutions Provider



Top Product in Power Electronics



Top Product of the Year

## **Ampt String Optimizer**



**Ampt Communication Unit** 

## String Optimizer Enables High Fixed-Voltage



MPP Tracking on each string eliminates voltage mismatch. Programmable output delivers high fixed-voltage output.

#### Lower Cost Electrical BOS



Fewer combiners and less cabling to save on cost

## More Energy Through Mismatch Correction



134x higher resolution MPPT improves performance

## String-Level MPPT Recovers Mismatch Losses



String optimizers recover ~33% of annual losses

## Performance Advantage of our DC-Coupled Solution

#### Storage Roundtrip Efficiency



Achieve higher roundtrip storage efficiency while increasing the operating efficiency of the inverter and battery converter.

#### Curtailment Harvest



Capture array power that would normally be lost by charging the battery during periods of AC power curtailment.

#### Mismatch Recovery



Deliver more energy by recovering mismatch losses from various sources with string-level maximum power point tracking (MPPT).

#### Clipped Energy Harvest



Charge the battery when the PV inverter is clipping output power. Capture array power that would otherwise be lost.

#### Low Voltage Harvest



Charge the battery storage system when the array voltage is below the inverter turn on voltage to maximize energy production.

#### Mitigate Degradation



Recover energy losses caused by variable degradation of PV cell and modules within a system to improve lifetime system performance.

Higher performance compared to AC-coupled solutions

## Smart PV + DC-coupled Storage Solution



Lower total system cost



Increase PV performance



Fewer and lower cost inverter & transformer



More efficient energy storage



Lower cost battery converter



Improved O&M



Decrease EBOS costs



Simplified DC controls for improved grid response

Advancing Renewable Energy Around the World

## Thank You





Salvador Rodriguez
Chief Commercial Officer



srodriguez@eksenergy.com



https://www.linkedin.com/in/salvador-rodríguez-a2121891/





Mark Kanjorski VP Strategic Marketing



mark.kanjorski@ampt.com



https://www.linkedin.com/in/mark-kanjorski-3b76a149