Investigation on N-PERT Bifacial Solar Cell and Module

Dr. Feng Li
Deputy General Manager of Technology Center
Yingli Energy (China) Co., Ltd
Outline

1. PANDA - N-PERT Cell
2. N-PERT SBSF Cell Investigation
3. PANDA Cell Module
4. Summary
B and P diffused regions made by different technologies (two diffusions, co-diffusion using doped glasses, ion implantation with anneal)

Most of existing P-type Si cell process technology can be used
PANDA — N-PERT Cell

Yingli Panda Cell Efficiency

- Simple cell structure and easy manufacture
- Cost-effective production steps and compatible with existing production lines
- Sun-light can be accepted by double sides, produce more electricity
- Excellent anti-LID performance

Key Features:

- Front contact
- Rear contact (Ag)
- Textured front surface with antireflection coating
- Boron diffused emitter (P⁺)
- Phosphorus diffused BSF
- SiNx passivation coating
- CZ N-Si Substrate
- Incident light

Additional Diagram Details:

- Double Printing
- Rear Polishing
- Ion implantation
- Four Busbars Metallization

Efficiency Timeline (2009-2017):

- 2009: 18.0%
- 2010: 18.5%
- 2011: 19.0%
- 2012: 19.5%
- 2013: 20.0%
- 2014: 20.5%
- 2015: 21.0%
- 2016: 21.5%
N-PERT SBSF Cell Investigation

Conventional back surface field

- Low contact resistance
- High back surface recombination velocity

Selective back surface field (SBSF)

- Low contact resistance
- Low back surface recombination velocity
N-PERT SBSF Cell Investigation

- (P+) emitter
- N-type Substrate
- N+ BSF
- n++
- Depth
- Mask Width
- BSF passivation
- Alignment
- Voc Jsc FF
- Efficiency
- Voc Jsc FF
- Efficiency
Thermal treatment has great impact not only on the R_{sheet} but also on the doping profile.

Increasing rate of R_{sheet} is related to the doping profile.
Suitable etching depth has to be selected for balancing the Voc, Jsc and FF that have great effect on the final cell efficiency.
Mask width optimization

<table>
<thead>
<tr>
<th>Group</th>
<th>Mask width(um)</th>
<th>Voc(mV)</th>
<th>Jsc(mA/cm²)</th>
<th>FF(%)</th>
<th>Eff(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>6a</td>
<td>657</td>
<td>39.17</td>
<td>80.73</td>
<td>20.78</td>
</tr>
<tr>
<td>G2</td>
<td>5a</td>
<td>659</td>
<td>39.21</td>
<td>80.66</td>
<td>20.84</td>
</tr>
<tr>
<td>G3</td>
<td>4a</td>
<td>661</td>
<td>39.26</td>
<td>80.65</td>
<td>20.93</td>
</tr>
<tr>
<td>G4</td>
<td>3a</td>
<td>660</td>
<td>39.30</td>
<td>80.62</td>
<td>20.91</td>
</tr>
</tbody>
</table>

Etch back

Metalization
N-PERT SBSF Cell Investigation

Mask width optimization

<table>
<thead>
<tr>
<th>Group</th>
<th>Finger number</th>
<th>Mask width(um)</th>
<th>Voc (mV)</th>
<th>Jsc (mA/cm²)</th>
<th>FF (%)</th>
<th>Eff (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Normal N-PERT</td>
<td>653</td>
<td>38.85</td>
<td>80.43</td>
<td>20.40</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>n1</td>
<td>A1</td>
<td>662</td>
<td>39.35</td>
<td>79.54</td>
<td>20.72</td>
</tr>
<tr>
<td>G3</td>
<td>n2</td>
<td>A2</td>
<td>661</td>
<td>39.31</td>
<td>80.12</td>
<td>20.83</td>
</tr>
</tbody>
</table>

※Same mask area for G2 and G3
N-PERT SBSF Cell Investigation

Cell performance comparison

<table>
<thead>
<tr>
<th>Group</th>
<th>Voc (mV)</th>
<th>Jsc (mA/cm²)</th>
<th>FF (%)</th>
<th>Eff (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-PERT Cell</td>
<td>656</td>
<td>38.98</td>
<td>80.95</td>
<td>20.70</td>
</tr>
<tr>
<td>SBSF Cell</td>
<td>662</td>
<td>39.62</td>
<td>80.91</td>
<td>21.22</td>
</tr>
</tbody>
</table>

Graphs:
- **Top right graph:** Shows IQE vs Wavelength for Panda Cell and SBSF Cell.
- **Bottom right graph:** Displays cell efficiency distribution for N-PERT Cell and N-PERT SBSF Cell.
N-PERT SBSF Cell Investigation

Typical cell parameters

<table>
<thead>
<tr>
<th>Cell Parameters</th>
<th>Area (cm²)</th>
<th>V_{oc} (mV)</th>
<th>J_{sc} (mA/cm²)</th>
<th>FF (%)</th>
<th>Eff (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Side</td>
<td>244.3</td>
<td>664.3</td>
<td>40.01</td>
<td>80.95</td>
<td>21.52</td>
</tr>
<tr>
<td>Rear Side</td>
<td>244.3</td>
<td>661.6</td>
<td>36.53</td>
<td>80.87</td>
<td>19.54</td>
</tr>
</tbody>
</table>

Bifaciality factor > 90%
PANDA Module

LID characteristics

20 Kwh outdoor test

AVE. LID = 0.00 %

Excellent anit-LID performance
Gain of power output from Panda module compared to traditional mono c-Si solar cell module

One Month Data

<table>
<thead>
<tr>
<th>Average Gain of Power Output</th>
<th>Maximum Gain of Power Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.20%</td>
<td>33%</td>
</tr>
</tbody>
</table>

Generating Test

- **Power Gain (%)**
- **Radiation of titled surface (kWh/m^2)**

![Graph showing power gain and radiation of titled surface over a month from 2015/8/15 to 2015/9/14]
- Power output collection for 1 year with installed modules on a bright rooftop
- The distance from module to the ground of 30 cm
- The test result shows the Panda module average power output is 21% higher than normal module.

<table>
<thead>
<tr>
<th>STC power output</th>
<th>increased 5%</th>
<th>10%</th>
<th>15%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>290 W</td>
<td>304 W</td>
<td>319 W</td>
<td>333 W</td>
<td>348 W</td>
<td>362 W</td>
<td>377 W</td>
</tr>
</tbody>
</table>
PANDA Module

Power gain under different reflective conditions

- 10% power output gain at the ground and grassland with reflectivity of 25%
- 15% power output gain at the Sand/gray cement floor with reflectivity of 50%
- 25% power output gain at the bright rooftop with reflectivity of 78%
- 30% power output gain at the snowfield with reflectivity of 90%
PANDA Module

Self-cleaning function

Panda Module vs Normal Module

Panda Module vs Normal Module
Summary

- YINGLI N-PERT bifacial cell with SBSF structure have already reached efficiency of 21.52%, and 19.54% on rear side.

- There are still many rooms to improve the N-PERT solar cell performance such as doping, passivation and metallization. Manufacturing technique aiming to 22% efficiency of N-PERT cell with bifaciality > 95% is under investigation and will be realized at YINGLI soon.

- YINGLI PANDA module with excellent anti-LID performance provides 10% - 30% output gain compared to monofacial module depending on ground reflective conditions.
Thanks for your attention